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Goal 

!  Advance modeling and response against human-
like agents who seek to actively “game” against each 
other over the course of repeated interactions 

!  Build from current theory in artificial intelligence 
•  Sequential decision-making frameworks 

!  “Bridge the gap” between theory and practice to solve 
real-world adversarial problems 
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Motivation 

!  Humans analyze many factors before acting 
•  Current status 
•  Opponent behavior 
•  Past strategies (opponent and self) 

!  Drawbacks in traditional game theory (Nash equilibria)  
•  No clear way to choose between multiple equilibria 
•  Inability to deal with opponents that do not act 

according to equilibrium strategies 

Can we develop computer systems that process 
decisions more like we do? 



Slide 7!

Lawrence Livermore National Laboratory 
Unclassified LLNL-PRES-558031 

! Uncertainty about the (non-deterministic) environment 
" Maintain belief, or probability distribution, over states 
 
! Example: card games 
 

Assumptions and strategies 
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!  Intelligent opponents (who also maintain beliefs about us) 
" Account for the opponent’s beliefs in nested models; 

more uncertainty inherent in more deeply nested beliefs 
 

!"!"!""!"!"!"

Assumptions and strategies 
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!  Uncertainty about the effects of actions 
•  Not entirely certain about how: 
- Environment state changes as a result of actions 
- Observations are related to environment state 

 
"  Treat transition model and observation model as part of 

the uncertain environment state 
" Maintain beliefs over model parameters (in addition to 

the environment states) 

Assumptions and strategies  
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To develop our model, we start with the single-
agent decision process… the POMDP 

! A single-agent decision process at 
each time step involves: 
o  s : state of the environment, 

unknown to the agent 
o  a : action that the agent performs 
o  r : reward due to current state and 

current action 
o  z : observation due to current 

state and previous action 

zt 

rt-1 

bt 

st 

at-1 

st-1 

bt-1 
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Background: POMDP 

!  Common framework for planning in single-agent domains 
 

•  States 
•  Actions 
•  Transition function 
•  Observations 
•  Observation function 
•  Reward function 
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Background: POMDP 

!  Common framework for planning in single-agent domains 

Agent’s objective: optimize rewards given its beliefs 

Environment 

State 

Beliefs 

action 

observation 
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For adversarial modeling, we need an interactive 
decision process… the IPOMDP 

! An interactive decision process 
involves (at least) two agents; 
their joint actions affect the next 
state. 

! Each agent has its own 
interactive states (is), with 
nested beliefs to predict the 
opponent’s action. 

 

          isi
t-1 

st-1 bj
t-1 
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Background: IPOMDP 

!  Multi-agent extension of POMDP 

!  Supports decision-making in both cooperative and  
non-cooperative settings 

•  Interactive states                          with 
•  Joint actions 
•  Transition function 
•  Observations 
•  Observation function 
•  Reward function 

 

iiiilili ROTAISIPOMDP ,,,,,,, !=

1,, !"= ljli MSIS SISi =0,
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Background: IPOMDP 

!  Multi-agent extension of POMDP 
!  Supports decision-making in both cooperative and  

non-cooperative settings 
 

Environment 

State 
Beliefs 

action 

observation 

Beliefs observation 

action 
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To increase realism, we came up with an adaptive 
interactive decision process… the BA-IPOMDP 

! A BA-IPOMDP allows 
uncertainty to be associated with 
the transition and observation 
functions via “augmented” 
Bayes-Adaptive interactive 
states (bais). 

! A bais contains counts on 
previous state transitions and 
observations.  

! The counts define the expected 
probabilities for T and O. 

                  baisi
t-1 st-1 bj

t-1 

State Transition 

Probability Distribution 

Observation 

Probability Distribution 
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A number of computational challenges exist in 
solving a BA-IPOMDP 
! Nested beliefs can lead to exponential increase in 

runtime for belief update 
! Huge state space due to counts being part of the state 
! Reachability trees with large branching factors 
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Simulation experiments: multi-agent tiger problem 

!  Two rooms/states: ferocious tiger in one room, jackpot in the other. 
o  Tiger position resets when a door is opened. 

!  Three actions: {open left door, open right door, listen}. 
!  Six observations: {growl from left side, growl from right side} 

     ! {door creak from left side, door creak from right side, silent}. 
!  Rewards: -100 for opening the tiger’s door, +10 for opening the pot 

of gold’s door, -1 for listening. 
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Results 

!  Learned values for 
observation probabilities 
converge to actual values. 

 
!  Learning agent earns more 

rewards than non-learning 
agent with incorrect 
assumptions. 
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Results 

 
!  Learning agents take more 

conservative actions, thus 
earn less rewards than non-
learning agents. 
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(a) Agent rewards
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(b) Observation KL divergences
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(c) Transition KL divergences

Figure 3: Plots of agent rewards and observation/transition KL divergences for a case of biased doors.
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(a) Scenario 1: Rewards
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(b) Scenario 3: Rewards
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(c) Scenario 1: KL div
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(d) Scenario 3: KL div

Figure 2: Plots comparing agent rewards (Figures 2(a) and 2(b))
and KL divergences (Figures 2(c) and 2(d)) in Scenarios 1 and 3.

in reward reductions evident in Scenarios 1 and 3. Inter-
estingly, in the case of Scenario 2, this phenomenon man-
ifests itself in a different way. Here, Agent 0 both learns and
models its opponent as learning; Agent 1, in contrast, is us-
ing the correct parameters for both itself and its opponent
model. The result is that Agent 0 experiences a substantial
relative reward reduction. This highlights another interesting
trend we have observed in our various scenario analyses: a
“stronger” opponent model leads to higher rewards.

This trend may be explained as follows. In Scenario 1,
Agent 0’s opponent model possesses the correct parameter
values and thus represents a strong opponent. A strong op-
ponent will typically pursue exploitation over exploration,
adopting a more aggressive strategy. Thus, Agent 0 will
utilize a exploitation-dominant strategy, and will conse-
quently reap higher rewards on average. Contrast this with
the “weaker” learning opponent model in Scenario 2, in
which Agent 0 opts more for exploration, performing the
listening action more frequently to improve parameter esti-

mates (assuming its opponent is likely to do the same). The
ultimate result is that Agent 0’s average accrued reward is
reduced in Scenario 2 compared to Scenario 1.

The boxplot results for Scenarios 4 and 5 illustrate the ef-
fect of fixed incorrect parameters versus learned parameters
for the opponent model. At least for Agent 0, the compari-
son between the two scenarios suggests that, for the specific
choice of prior (i.e., uniform), an opponent model whose pa-
rameters are fixed incorrectly to the prior yields comparable
rewards to an opponent model that starts with the prior and
evolves with learning.
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Figure 4: Boxplots of rewards in an episode for each agent and
across all 100 simulation episodes. Each boxplot pair represents
one of the five scenarios in Table 2.

5.3 Analysis of Joint Parameter Learning
Unfortunately, the multiagent Tiger problem is not very
well-suited for analyzing the learning of transition proba-
bilities, because the only state transition is the resetting of
the tiger’s location to the left or right door with equal prob-
ability, triggered by the door opening action. To investigate
the impact of learning both transition and observation prob-
abilities, we considered an alternative version of the Tiger
problem, one with biased doors, in which the tiger resets to
the left door with a probability of 0.75 and the right with a
probability of 0.25.

Figure 3 presents our results for Scenario 3. (Like before,
only one agent’s KL divergence is shown since both exhib-
ited similar convergence.) Under this biased-door version of

ing horizons, this tree grows exponentially to account for
every possible sequence of actions and observations. To ad-
dress this issue, (Doshi and Gmytrasiewicz 2005) proposed
reachability tree sampling (RTS) as a way to reduce the tree
branching factor. In RTS, observations are sampled accord-
ing to ztk ∼ P (Zk|a

t−1
k , b̃t−1

k,l ) and a partial reachability tree
is built based on the sampled observations and the complete
set of actions.

In solving BA-IPOMDPs, the curse of history requires ap-
proximations beyond the standard RTS to address an ad-
ditional computational bottleneck: the construction of the
opposing agent’s reachability tree. In order for agent k to
behave optimally, it must anticipate what action −k might
take; thus, in solving for k’s optimal policy, it must also
construct −k’s reachability tree and use it to find −k’s op-
timal action. As the tree size grows as O((|A−k||Z−k|)l),
it becomes large quickly. Consequently, we follow (Ng et
al. 2010) to prune the opposing agent’s reachability tree in
addition to the agent’s reachability tree.

5 Empirical Results

In our evaluation, we are interested in (1) the effect of the ap-
proximate belief update from BA-IPF, and (2) the effect of
learning. We applied the multiagent Tiger problem (Doshi
and Gmytrasiewicz 2009) to study these effects. In our ex-
periments, we limit the nesting to one level and the planning
horizon to two. For each scenario, we solved both agents as
level-1 BA-IPOMDPs (since each models the other agent)
independently and present results obtained from simulating
their behaviors against each other. Our experiments were
performed on a 2.53GHz dual quad core Intel Xeon proces-
sor with 24GB of RAM.

In what follows, Sections 5.1 and 5.2 present results for
learning the observation probabilities, which entails estimat-
ing the 12 observation probabilities associated with the joint
action of �Listen, Listen� (six for TigerLeft and six for Tiger-
Right). Section 5.3 briefly discusses the results for learn-
ing the transition probabilities concurrently. This involves
estimating the 32 probabilities associated with either agent
opening either door (16 for TigerLeft and 16 for TigerRight).

5.1 Analysis of BA-IPF

The quality of approximation in BA-IPF is parametrized by
the number of particles. Table 1 shows, as a function of par-
ticle number, Agent 0’s (1) average reward per episode; (2)
KL divergence between the actual and estimated observation
distributions at the end of each episode; and (3) average time
for planning and execution per episode. The results are aver-
aged over 200 simulations of 100 episodes each. In this sce-
nario, Agent 1 is using the correct observation probabilities
and both agents are using the correct observation probabil-
ities for their respective opponent models. Hence, Agent 0
is only learning its own observation probabilities. The prior
for Agent 0’s observation probabilities is set to uniform.

# Particles Avg. Reward Final KL Div. Avg. Time (s)
4 -15.9 1.21 0.22
8 -6.3 0.52 1.09

16 -1.8 0.26 4.53

Table 1: Comparison of average rewards, final KL divergence, and
average overall time, for varying numbers of particles.

In general, as the number of particles increases, reward and
time increase while KL divergence decreases. For subse-
quent experiments, the number of particles is set to 16.

5.2 Analysis of Observation Parameter Learning

In a given simulation of the two-agent Tiger game, param-
eter learning can occur for each agent and/or the agent’s
model of its opponent. Furthermore, when an agent is not
learning, parameter values can be set correctly to the ac-
tual values or incorrectly to the uniform distribution. We ex-
plored a variety of simulation scenarios and report on the
select ones that show interesting trends (cf. Table 2). In each
scenario, we have two agents, each of which could either
be (1) not learning and using correct model parameters; (2)
learning its own parameters while assuming correct or in-
correct values for its opponent’s parameters; or (3) learning
both its own and the opponent’s parameters. In these scenar-
ios, learning takes place only over the observation probabil-
ities, which uses the uniform distribution as the prior.

Scenario Agent 0 Agent 1
Self Opp. Self Opp.

1 Learn Correct Correct Correct
2 Learn Learn Correct Correct
3 Learn Correct Learn Correct
4 Learn Incorrect Learn Incorrect
5 Learn Learn Learn Learn

Table 2: Parameter learning scenarios. The uniform distribution
is used as (1) the prior for when the agent is learning, and (2) the
static incorrect parameter for when the agent is not learning.

One notable trend is that agents accrue less rewards when
they are both learning compared to when only when one is
learning. This is shown by comparing Scenario 1, in which
only Agent 0 is learning, with Scenario 3, where both agents
are learning. Figure 2 shows the results for these two scenar-
ios, averaged over 500 simulations of 100 episodes each. It
also shows the “baseline” static performance, for when the
agents are not learning, but are using either the correct or in-
correct observation probabilities. Each baseline is averaged
over 50,000 simulations (here episodes have no significance
as no learning occurs).

For Scenario 1, Figure 2(a) shows the learning agent—
Agent 0—to be initially at a disadvantage, accruing smaller
returns than its opponent. This gap in performance is nar-
rowed over time, reflecting the positive effects of successful
learning. This is further supported by Figure 2(c), which re-
veals a dramatic reduction in KL divergence for the learning
agent.

For Scenario 3, when Agent 1 is also learning, it too yields
improved rewards over time, as evidenced in Figure 2(b).
The average reward obtained for the two agents is less than
the correct parameter baseline, but is still higher than the in-
correct parameter baseline, showing benefits provided by the
BA-IPOMDP over the I-POMDP with static incorrect pa-
rameters. When both agents are learning, each agent’s learn-
ing success is reduced, as reflected in the KL divergence in
Figure 2(d). Only one agent’s KL divergence is shown since
both exhibited similar convergence. Nonetheless, as shown
in the percentile plots, most of the simulations are still in
close convergence to the correct parameters.

Figure 4 summarizes the results for all five scenarios from
Table 2. First, we see that the boxplots confirm the trend
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Concluding remarks 

!  The POMDP and its extensions provide a natural way to 
model sequential decision-making under uncertainty 

!  Major advances made in applying AI theory to real-world 
problems (mostly coordination between cooperative 
agents) 

!  In theory, proposed framework shows promise for 
modeling complicated human adversarial systems 

!  In practice, deployment currently hindered by algorithmic 
complexity 

 
For technical details and references, please refer to our AAAI paper. 


